Paternity assignment in the polyploid Acipenser dabryanus based on a novel microsatellite marker system
نویسندگان
چکیده
Acipenser dabryanus is listed as a Critical Endangered species in the IUCN Red List and the first class protected animals in China. Fortunately, A. dabryanus specimens are being successfully bred in captivity for conservation. However, for effective ex situ conservation, we should be aware of the genetic diversity and the degree of relatedness of the individuals selected for breeding. In this study, we aimed at the development of novel and reliable microsatellites used for the genetic study of A. dabryanus. A total of 14,321 simple sequence repeats (SSRs) were detected by transcriptome sequencing and screening. We selected 20 novel and polymorphic microsatellites (non-dinucleotide) with good repeatability from the 100 tested loci for a subsequent genetic and paternity study. A set of captive broodstock (F1 stock, n = 43) and their offspring (F2 stock, n = 96) were used to examine the efficiency of the 20 SSRs for assigning parentage to offspring, with an allocation success of 91.7%. We also found that only a few families predominantly contributed to the progeny produced by the 43 breeders. In addition, mitochondrial DNA data showed that the captive broodstock (F1 individuals) had an excellent probability of the same lineage, implying that a high level of inbreeding may have occurred in these individuals. Our research provides useful information on genetic diversity and reproductive pattern of A. dabryanus, and the 20 SSRs developed in this study can be applied to the future breeding program to avoid inbreeding for this stock or other related species of Acipenseriformes.
منابع مشابه
Isolation and characterization of microsatellite loci in the Persian sturgeon (Acipenser persicus, Borodine, 1897) and cross-species amplification in four commercial sturgeons from the Caspian Sea
In order to have a sustainable management on Persian sturgeon as a highly commercial species in the South Caspian Sea, we need to identify its population structure and the level as well as its conservation status in their natural habitat. To develop a conservation program for this all Caspian Sea' sturgeon species it requires knowledge of its genetic diversity using reliable molecular marker t...
متن کاملIsolation and characterization of microsatellite loci in the Persian sturgeon (Acipenser persicus, Borodine, 1897) and cross-species amplification in four commercial sturgeons from the Caspian Sea
In order to have a sustainable management on Persian sturgeon as a highly commercial species in the South Caspian Sea, we need to identify its population structure and the level as well as its conservation status in their natural habitat. To develop a conservation program for this all Caspian Sea' sturgeon species it requires knowledge of its genetic diversity using reliable molecular...
متن کاملDevelopment of disomic single-locus DNA microsatellite markers for Persian sturgeon (Acipenser persicus) from the Caspian Sea
Understanding the scale at which wild stocks of Persian sturgeon (Acipenser persicus) are genetically discrete is necessary for effective management of this commercially important species. Disomic DNA microsatellite markers are among the best tools for determining stock structure in fishes. As all sturgeon species have a polyploid ancestry of all sturgeons, most gene loci exhibit more than two ...
متن کاملDevelopment of disomic single-locus DNA microsatellite markers for Persian sturgeon (Acipenser persicus) from the Caspian Sea
Understanding the scale at which wild stocks of Persian sturgeon (Acipenser persicus) are genetically discrete is necessary for effective management of this commercially important species. Disomic DNA microsatellite markers are among the best tools for determining stock structure in fishes. As all sturgeon species have a polyploid ancestry of all sturgeons, most gene loci exhibit more than two ...
متن کاملResolving microsatellite genotype ambiguity in populations
11 A major limitation in the analysis of genetic marker data from polyploid organisms is 12 non-Mendelian segregation, particularly when a single marker yields allelic signals from 13 multiple, independently segregating loci (isoloci). However, with markers such as mi14 crosatellites that detect more than two alleles, it is sometimes possible to deduce which 15 alleles belong to which isoloci. ...
متن کامل